The most up-to-date publication list can be found on Google Scholar.
(* corresponding author, † equal contribution) 
  1. Bright Sub-20 nm Cathodoluminescent Nanoprobes for Electron Microscopy. Prigozhin, M. B.; Maurer, P. C.; Courtis, A. M.; Liu, N.; Wisser, M. D.; Siefe, C.; Tian, B.; Chan, E.; Song G.; Fischer, S., Chu, S.* et al. Nature Nanotechnology 2019, accepted. https://arxiv.org/abs/1806.00075
  2. Energy Transfer Networks Within Upconverting Nanoparticles Are Complex Systems With Collective, Robust, and History-Dependent Dynamics. Teitelboim, A.; Tian, B.; Garfield, D. J.; Fernandez-Bravo, A.; Gotlin, A. C.; Schuck, P. J.*; Cohen, B. E.*; Chan, E. M.* Journal of Physical Chemistry C 2019, 123, 2678–2689, DOI:10.1021/acs.jpcc.9b00161.
  3. Synthesis and X-Ray Absorption Spectroscopy of Potassium Transition Metal Fluoride Nanocrystals. Plews, M. R.; Yi, T.; Lee, J.; Chan, E.; Freeland, J. W.; Nordlund, D.; Cabana, J. CrystEngComm 2019, 46, 4630, DOI: 10.1039/c8ce01349g.
  4. Dynamic Behavior of Nanoscale Liquids in Graphene Liquid Cells Revealed by in Situ Transmission Electron Microscopy. Yang, J.; Alam, S. B.; Yu, L.; Chan, E. M.; Zheng, H. Micron 2019, 116, 22-29, DOI:10.1016/j.micron.2018.09.009.
  5. Apparent Self-Heating of Individual Upconverting Nanoparticles. Pickel, A. D.; Chan, E. M.; Borys, N. J.; Teitelboim, A.; Schuck, P. J.; Dames, C. Nature Communications 2018, 9, 4907, DOI: 10.1038/s41467-018-07361-0.
  6. Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology. Kuo, Y.; Li, J.; Michalet, X.; Chizhik, A.; Meir, N.; Bar-Elli, O.; Chan, E.; Oron, D.; Enderlein, J.; Weiss, S. ACS Photonics 2018, 5, 4788–4800, DOI: 10.1021/acsphotonics.8b00617.
  7. Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy. Hauwiller, M. R.; Zhang, X.; Liang, W.-I.; Chiu, C.-H.; Zhang, Q.; Zheng, W.; Ophus, C.; Chan, E. M.; Czarnik, C.; Pan, M.; Ross, F. M.; Wu, W. W.; Chu, Y.-H.; Asta, M.; Vorhees, P. W.; Alivisatos, A. P.; Zheng, H. Nano Letters 2018, 18, 6427–6433, DOI: 10.1021/acs.nanolett.8b02819.
  8. Upconverting Nanoparticle Micro-Lightbulbs Designed for Deep Tissue Optical Stimulation and Imaging. Chamanzar, M.; Garfield, D. J.; Iafrati, J.; Chan, E.; Sohal, V.; Cohen, B.; Schuck, P. J.; Maharbiz, M. M. Biomedical Optics Express 2018, 9, 4359-4371. DOI:10.1364/BOE.9.004359
  9. Expanding the I−II−V Phase Space: Soft Synthesis of Polytypic Ternary and Binary Zinc Antimonides. White, M. A.; Baumler, K. J.; Chen, Y.; Venkatesh, A.; Medina-Gonzalez, A. M.; Rossini, A. J.; Zaikina, J. V.; Chan, E. M.; Vela, J. Chemistry of Materials 2018, 30, 6173–6182, DOI: 10.1021/acs.chemmater.8b02910.
  10. Photostable and Efficient Upconverting Nanocrystal-Based Chemical Sensors. Tajon, C. A.; Yang, H.; Tian, B.; Tian, Y.; Ercius, P.; Schuck, P. J.; Chan, E. M.; Cohen, B. E.* Optical Materials 2018, 84, 345-353, DOI:10.1016/j.optmat.2018.07.031.
  11. Low Irradiance Multiphoton Imaging with Alloyed Lanthanide Nanocrystals. Tian, B.; Fernandez-Bravo, A.; Najafiaghdam, H.; Torquato, N. A.; Altoe, M. V. P.; Teitelboim, A.; Tajon, C. A.; Borys, N. J.; Barnard, E. S.; Anwar, M.; Chan, E. M.*; Schuck, P. J.*; Cohen, B. E.* Nature Communications 2018, 9: 3082, DOI: 10.1038/s41467-018-05577-8.
  12. Facile Transformation of Imine Covalent Organic Frameworks Into Crystalline Porous Aromatic Frameworks. Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Nature Communications 2018, 9: 2998, DOI: 10.1038/s41467-018-05462-4.
  13. Continuous-Wave Upconverting Nanoparticle Microlasers. Fernandez-Bravo, A.; Yao, K.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B.; Tajon, C. A.; Moretti, L.; Altoe, M. V.; Aloni, S.; Beketayev, K.; Scotognella, F.; Cohen, B. E.*; Chan, E. M.*;Schuck, P. J.* Nature Nanotechnology 2018, 13, 572–577. DOI:10.1038/s41565-018-0161-8
  14. The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver-Bismuth Halide Compositions. Bekenstein, Y.; Dahl, J. C.; Huang, J.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P.; Alivisatos, A. P. Nano Letters 2018, 18 (6), 3502-3508. DOI:10.1021/acs.nanolett.8b00560.
  15. Enrichment of Molecular Antenna Triplets Amplifies Upconverting Nanoparticle Emission. Garfield, D. J.; Borys, N. J.; Hamed, S. M.; Tajon, C. A.; Tian, B.; Shevitski, B.; Barnard, E. S.; Suh, Y. D.; Aloni, S.; Neaton, J. B.; Chan, E. M.*, Cohen, B. E.*; Schuck, P. J.* Nature Photonics 2018, 12, 402–407. DOI:10.1038/s41566-018-0156-x .
  16. Accessing Valley Degree of Freedom in Bulk Tin(II) Sulfide at Room Temperature. Lin, S.; Carvalho, A.; Yan, S.; Li, R.; Kim, S.; Rodin, A.; Carvalho, L.; Chan, E. M.; Wang, X.; Castro Neto, A. H.; Yao, J. Nature Communications 2018, 9, 1455. DOI:10.1038/s41467-018-03897-3.
  17. Macrophage-Mediated Delivery of Light Activated Nitric Oxide Prodrugs with Spatial, Temporal and Concentration Control. Evans, M. A.; Huang, P.-J.; Iwamoto, Y.; Ibsen, K. N.; Chan, E. M.; Hitomi, Y.; Ford, P. C.; Mitragotri, S.; Chemical Science 2018, 9, 3729-3741. DOI:10.1039/C8SC00015H.
  18. Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools. Materia, M.; Pernia, M.; Scotto, M.; Balakrishnan, P. B.; Avugadda, S.; García-Martín, M. L.; Cohen, B. E.; Chan, E. M.; Pellegrino, T. Bioconjugate Chemistry 2017, 11, 2707-2714. DOI:10.1021/acs.bioconjchem.7b00432.
  19. Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals. Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. and Almutairi, A. Journal of the American Chemical Society 2017, 139, 3275–3282. DOI:10.1021/jacs.7b00223.
  20. Precise Tuning of Surface Quenching for Luminescence Enhancement in Core-Shell Lanthanide-Doped Nanocrystals. Fischer, S.; Bronstein, N. D.; Swabeck, J.; Chan, E. M.; Alivisatos, A. P. Nano Letters 2016, 16, 7241–7247. DOI:10.1021/acs.nanolett.6b03683.
  21. Energy-Looping Nanoparticles: Harnessing Excited State Absorption for Deep-Tissue Imaging. Levy, E. S.; Tajon, C. A.; Bischof, T. S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D. J.; Chamanzar, M.; Maharbiz, M. M.; Sohal, V. S.; Schuck, P. J.; Cohen, B. E.; Chan, E. M.* ACS Nano 2016, 10, 8423–8433. DOI:10.1021/acsnano.6b03288.
  22. Far-field Optical Nanothermometry Using Individual Sub-50 nm Upconverting Nanoparticles. Kilbane, J. D.; Chan, E. M.; Monachon, C.; Borys, N. J.; Levy, E. S.; Pickel, A. D.; Urban, J. J.; Schuck, P. J.; Dames. C. Nanoscale 2016, 8, 11611-11616. DOI:10.1039/c6nr01479h.
  23. Core/Shell Approach to Dopant Incorporation and Shape Control in Colloidal Zinc Oxide Nanorods. Mehra, S.; Bergerud, A.; Milliron, D.J.; Chan, E.M.; Salleo, A. Chemistry of Materials 2016, 28, 3454–3461. DOI:10.1021/acs.chemmater.6b00981.
  24. Dye Sensitized Core/ Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications. Wu, X.; Zhang, Y.; Takle, K.; Bilsel, O.; Li, Z.; Lee, H.; Zhang, Z.; Li, D.; Fan, W.; Duan, C.; Chan, E. M.; Lois, C.; Han, G. ACS Nano 2016, 10, 1060–1066. DOI:10.1021/acsnano.5b06383.
  25. Modular Synthetic Design Enables Precise Control of Shape and Doping in Colloidal Zinc Oxide Nanorods. Mehra, S.; Chan, E.M.; Salleo, A. Journal of Materials Chemistry C 2015, 3, 7172-7179. 
  26. Rationally Designed Energy Transfer in Upconverting Nanoparticles. Chan, E.M.*; Levy, E.S.; Cohen, B.E.* Advanced Materials 2015, DOI:10.1002/adma.201500248 (invited). 
  27. Combinatorial Approaches for Developing Upconverting Nanomaterials: High-Throughput Screening, Modeling, and Applications. Chan, E.M.* Chemical Society Reviews 2015, 44, 1653-1679 (invited). 
  28. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Prodrug-Induced Photodynamic Therapy. Punjabi, A.; Wu, X.; Tokatli-Apollon A.; El-Rifai, M.; Lee, H.; Zhang, Y.; Wang, C., Liu, Z., Chan, E.M.; Duan, C., Han, G. ACS Nano 2014, 8, 10621-10630. 
  29. Engineering Bright, Sub-10-nm Upconverting Nanocrystals for Single-Molecule Imaging. Gargas, D.J.†; Chan, E.M.†; Ostrowski, A.D.; Aloni, S.A.; Altoe, V.; Barnard, E.S.; Sanii, B.A.; Urban, J.J.; Milliron, D.J.; Cohen, B.E.; Schuck, P.J. Nature Nanotechnology 2014, 9, 300-305. 
  30. Ultralow Thermal Conductivity in Inorganic CdSe Nanocomposites with Controlled Grain Size. Feser, J.P.; Chan, E.M.; Majumdar, A.; Segalman, R.A.; Urban, J.J. Nano Letters 2013, 13, 2122-2127. 
  31. Optimization of Gain and Energy Conversion Efficiency Using Front-Facing Photovoltaic Cell Luminescent Solar Concentrator Design. Corrado, C.; Leow, S. W.; Osborn, M.; Chan, E.; Balaban, B.; Carter, S. Solar Energy Materials and Solar Cells 2013, 111, 74-81. 
  32. Quantum Dot Photoluminescence Quenching by Cr(III) Complexes. Photosensitized Reactions and Evidence for a FRET Mechanism. Burks, P.T.; Ostrowski, A.D.; Mikhailovsky, A.A.; Chan, E.M.; Wagenknecht, P.S.; Ford, P.C. Journal of the American Chemical Society 2012, 134, 13266–13275. 
  33. Combinatorial Discovery of Lanthanide-Doped Nanocrystals with Spectrally Pure Upconverted Emission. Chan, E.M.*; Han, G.; Goldberg, J.D.; Gargas, D.J.; Ostrowski, A.D.; Schuck, P.J.; Cohen, B.E.; Milliron, D.J.* Nano Letters 2012, 12, 3839–3845. 
  34. Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells. Albers, A.E.; Chan, E.M.; McBride, P.C.; Ajo-Franklin, C.M.; Cohen, B.E.; Helms, B.A. Journal of the American Chemical Society 2012, 134, 9565–9568. 
  35. Concentrating and Recycling Energy in Lanthanide Codopants for Efficient and Spectrally Pure Emission: The Case Of NaYF4:Er3+/Tm3+ Upconverting Nanocrystals. Chan, E.M.*; Gargas, D.J.; Schuck, P.J.; Milliron, D.J. Journal of Physical Chemistry – B 2012, 116, 10561–10570 (invited). 
  36. Controlled Synthesis of Bright and Biocompatible Lanthanide-Doped Upconverting Nanocrystals. Ostrowski, A.D.; Chan, E.M.; Gargas, D.J.; Katz, E.M.; Han, G.; Schuck, P.J.; Milliron, D.J.; Cohen, B.E. ACS Nano 2012, 6, 2686–2692. 
  37. Probe Field Enhancement in Photonic Crystals by Upconversion Nanoparticles. Zhang, J.; Pick, T. E.; Gargas, D.; Dhuey, S.; Chan, E. M.; Wu, Y.; Liang, X. Schuck, P. J.; Olynick, D. L.; Helms, B. A.; Cabrini, S. Journal of Vacuum Science & Technology B 2011, 29, 06F403-1. 
  38. Focusing Nanocrystal Size Distributions via Production Control. Clark, M. D.; Kumar, S.; Owen, J. S.; Chan, E. M. Nano Letters 2011, 11, 1976-1980. 
  39. Size-dependent Polar Ordering in Colloidal GeTe Nanocrystals. Polking, M. J.; Urban, J. J.; Milliron, D. J.; Zheng, H.; Chan, E. M.; Caldwell, M. A.; Raoux, S.; Kisielowski, C. F.; Ager, J. W.; Ramesh, R.; Alivisatos, A. P. Nano Letters 2011, 11, 1147-1152. 
  40. Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals. Owen, J. S.; Chan, E. M.; Liu, H. T.; Alivisatos, A. P.; Journal of the American Chemical Society 2010, 132, 18206–18213. 
  41. Reproducible, High-throughput Synthesis of Colloidal Nanocrystals for Optimization in Multidimensional Parameter Space. Chan, E. M.; Xu, C.; Mao, A.W.; Han, G.; Owen, J. S.; Cohen, B. E.; Milliron, D. J. Nano Letters 2010, 10, 1874-1885. 

Emory Chan's Pre-Molecular Foundry Publications 

  1. Millisecond Kinetics of Nanocrystal Cation Exchange Using Microfluidic X-ray Absorption Spectroscopy. Chan, E. M.; Marcus, M. A.; Fakra, S.; Elnaggar, M.; Mathies, R. A.; Alivisatos, A. P. Journal of Physical Chemistry – A 2007, 111, 12210-12215 (invited). 
  2. The Concept of Delayed Nucleation in Nanocrystal Growth Demonstrated for the Case of Iron Oxide Nanodisks. Casula, M. F.; Jun, Y.-W.; Zaziski, D. J.; Chan, E. M.; Corrias, A.; Alivisatos, A. P. Journal of the American Chemical Society 2006, 128, 1675-1682. 
  3. High-Temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets. Chan, E. M.; Alivisatos, A. P.; Mathies, R. A. Journal of the American Chemical Society 2005, 127, 13854-13861. 
  4. Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors. Chan, E. M.; Mathies, R. A.; Alivisatos, A. P. Nano Letters 2003, 3, 199-201. 
  5. Oriented Growth of Suspended Single Walled Carbon Nanotubes. Cassell, A.; Franklin, N.; Tombler, T.; Chan, E.; Kong, J.; Dai, H.; Journal of the American Chemical Society 1999, 121, 7975-7976. 
  6. Cross-linkable Polymers Based on Dialkylfluorenes. Klarner, G.; Lee, J.-I.; Lee, V. Y.; Chan, E.; Chen, J.-P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D.; Chemistry of Materials 1999, 11, 1800-1805.